KEY FEATURES of Genesis™ 079

- A small seeded kabuli (predominantly 6-7mm) with smaller seed than Genesis™ 090 (predominantly 6-7mm)
- Improved adaptation to short season environments due to earlier flowering and earlier maturity than current varieties
- Highest yields in short season environments than current varieties
- Resistant to foliar ascochyta blight
- Early maturity and uniform short plant height offers improved potential for agronomic weed control options under some conditions
- Budget for grain prices at lowest end of small kabuli range due to 6-7mm seed

Where Genesis™ 079 fits into the farming system:
Genesis™ 079 is a high yielding chickpea, and has proved to be adapted to most chickpea growing areas of southern and Western Australia. It is likely to fit into farming systems where crop topping or weed wiping of herbicide resistant ryegrass escapes is common practice in other pulses to prevent weed seed set. It does however have to be considered carefully against alternative varieties and marketing types in medium or higher rainfall areas, or in areas prone to early frosts and low temperatures during pod set.

Genesis™ 079 could replace field peas in areas where frosts or high temperatures during flowering affect pea grain yield. It is less suited to northern Australia where phytophthora resistance is important in variety selection.

Variety Characteristics:

Breeding: Genesis™ 079 (tested as FLIP94-079C) is an introduction from the International Center for Agricultural Research in the Dry Areas (ICARDA), Syria. It was selected and released by the Victorian Department of Primary Industries in 2009 as part of the National Chickpea Breeding Program.

Agronomic Characteristics: Genesis™ 079 is a high yielding and widely adapted small seeded kabuli chickpea with resistance to ascochyta blight, showing no or minimal yield loss in trials subjected to high ascochyta disease pressure. Its flowering time is earlier, and its plant height shorter than Genesis™ 090 in southern Australia. Seed size will predominately be in the 6 and 7 mm range and other grain quality characteristics are generally consistent with other kabuli chickpea varieties. Genesis™ 079 is susceptible to phytophthora.

Agronomic features & disease resistance:

<table>
<thead>
<tr>
<th>Variety</th>
<th>Type</th>
<th>Seed Weight (g/100)</th>
<th>Main seed sizes (mm)</th>
<th>Seed colour</th>
<th>Flowering time</th>
<th>Maturity time</th>
<th>Plant height</th>
<th>Lodging</th>
<th>Ascochyta blight</th>
<th>Botrytis grey mould</th>
<th>Phytophthora</th>
</tr>
</thead>
<tbody>
<tr>
<td>Almaz™</td>
<td>Kabuli</td>
<td>41</td>
<td>8-9</td>
<td>cream</td>
<td>mid-late</td>
<td>late</td>
<td>medium</td>
<td>MR</td>
<td>MS-MR</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Genesis™ 079</td>
<td>Kabuli</td>
<td>26</td>
<td>6-7</td>
<td>cream</td>
<td>early</td>
<td>early</td>
<td>short</td>
<td>MR</td>
<td>R</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Genesis™ 090</td>
<td>Kabuli</td>
<td>30</td>
<td>7-8</td>
<td>cream</td>
<td>mid</td>
<td>mid-late</td>
<td>medium</td>
<td>MR</td>
<td>R</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Genesis™ 114</td>
<td>Kabuli</td>
<td>39</td>
<td>8-9</td>
<td>cream</td>
<td>mid-late</td>
<td>late</td>
<td>medium-tall</td>
<td>R</td>
<td>MS-MR</td>
<td>S</td>
<td>VS</td>
</tr>
<tr>
<td>Genesis™ 425</td>
<td>Kabuli</td>
<td>32</td>
<td>7-8</td>
<td>cream</td>
<td>mid</td>
<td>mid-late</td>
<td>medium</td>
<td>MR</td>
<td>S</td>
<td>S</td>
<td>MS</td>
</tr>
<tr>
<td>Kaniva</td>
<td>Kabuli</td>
<td>38</td>
<td>7-9</td>
<td>cream</td>
<td>late</td>
<td>late</td>
<td>medium</td>
<td>MS</td>
<td>VS</td>
<td>VS</td>
<td>VS</td>
</tr>
<tr>
<td>Genesis™ 509</td>
<td>Desi</td>
<td>16</td>
<td>5-6</td>
<td>brown</td>
<td>mid</td>
<td>early-mid</td>
<td>medium</td>
<td>MR</td>
<td>R</td>
<td>MS</td>
<td>S</td>
</tr>
<tr>
<td>Howzat™</td>
<td>Desi</td>
<td>21</td>
<td>6-7</td>
<td>light brown</td>
<td>mid</td>
<td>mid</td>
<td>medium</td>
<td>MS</td>
<td>MS-S</td>
<td>MS</td>
<td>MS</td>
</tr>
<tr>
<td>PBA Hat Trick</td>
<td>Desi</td>
<td>20</td>
<td>6-7</td>
<td>light brown</td>
<td>mid</td>
<td>mid</td>
<td>medium-tall</td>
<td>R</td>
<td>MR</td>
<td>S</td>
<td>MR</td>
</tr>
<tr>
<td>PBA Slasher</td>
<td>Desi</td>
<td>18</td>
<td>5-6</td>
<td>light brown</td>
<td>mid</td>
<td>mid</td>
<td>medium</td>
<td>MS</td>
<td>R</td>
<td>S</td>
<td>S</td>
</tr>
</tbody>
</table>

S = susceptible, MS = moderately susceptible, MR = moderately resistant, R = resistant.
Yield and adaptation
Genesis™ 079 has consistently yielded higher than Genesis™ 090 in long-term experiments across southern Australia. Genesis™ 079 is specifically suited to areas where short crop height and early maturity are important.

<table>
<thead>
<tr>
<th>Variety Name</th>
<th>Western Australia</th>
<th>South Australia</th>
<th>Victoria</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ag Zone 1,2 & 4</td>
<td>Eyre Peninsula</td>
<td>Yorke Peninsula</td>
</tr>
<tr>
<td>Genesis™ 079</td>
<td>104 (16)</td>
<td>112 (5)</td>
<td>111 (6)</td>
</tr>
<tr>
<td>Genesis™ 090</td>
<td>91 (33)</td>
<td>99 (4)</td>
<td>97 (15)</td>
</tr>
<tr>
<td>Genesis™ 509</td>
<td>-</td>
<td>100 (16)</td>
<td>100 (17)</td>
</tr>
<tr>
<td>Genesis™ 510</td>
<td>102 (32)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Genesis™ 836</td>
<td>100 (41)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PBA HatTrick</td>
<td>98 (27)</td>
<td>99 (7)</td>
<td>96 (10)</td>
</tr>
<tr>
<td>PBA Slasher</td>
<td>105 (20)</td>
<td>113 (8)</td>
<td>110 (11)</td>
</tr>
<tr>
<td>Genesis™ 836 yield (kg/ha)</td>
<td>1132 (41)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Genesis™ 509 yield (kg/ha)</td>
<td>-</td>
<td>1099 (16)</td>
<td>1260 (17)</td>
</tr>
</tbody>
</table>

* Numbers in () = site years. Yield data courtesy of NVT, PBA, SARDI, DPI Vic, DAFWA, I&I NSW.

<table>
<thead>
<tr>
<th>Variety Name</th>
<th>South Australia</th>
<th>Victoria</th>
<th>New South Wales</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eyre Peninsula</td>
<td>Yorke Peninsula</td>
<td>Mid North</td>
</tr>
<tr>
<td>Almaz™</td>
<td>83 (6)</td>
<td>83 (11)</td>
<td>75 (16)</td>
</tr>
<tr>
<td>Genesis™ 079</td>
<td>113 (7)</td>
<td>114 (13)</td>
<td>110 (18)</td>
</tr>
<tr>
<td>Genesis™ 090</td>
<td>100 (8)</td>
<td>100 (14)</td>
<td>100 (18)</td>
</tr>
<tr>
<td>Genesis 114</td>
<td>82 (6)</td>
<td>89 (11)</td>
<td>81 (16)</td>
</tr>
<tr>
<td>Genesis™ 425</td>
<td>94 (4)</td>
<td>94 (11)</td>
<td>94 (14)</td>
</tr>
<tr>
<td>Nalice™</td>
<td>77 (5)</td>
<td>82 (9)</td>
<td>72 (13)</td>
</tr>
<tr>
<td>Genesis™ 090 yield (kg/ha)</td>
<td>1460 (7)</td>
<td>1462 (13)</td>
<td>1408 (18)</td>
</tr>
</tbody>
</table>

* Numbers in () = site years. Yield data courtesy of NVT, PBA, SARDI, DPI Vic, I&I NSW.

Quality Characteristics
Genesis™ 079 is a small kabuli (6 to 7mm) so its grain will not attract the premiums paid for larger seeded kabuli grains (8 to 11mm). It is most likely to be traded as a bulk commodity rather than being graded to size for marketing. Genesis™ 079 is likely to receive prices lower than slightly bigger seeded varieties like Genesis™ 090. Realistically, Genesis™ 079 is more likely to receive desi prices, depending on seed size and demand.

Management Package
(Consult local grower guides for more detailed information)

This VMP updates and reinforces those management issues with Genesis™ 079 chickpeas that may be different to other chickpea varieties. Refer to existing guides for other general chickpea management issues.

Seeding Date and Rate:
- Target a sowing rate to give the same plants per square metre as other desi or small kabuli chickpeas.
- Sow at similar times as used for chickpeas in your region now and before ascochyta blight became a problem. Gains in yield and grain quality can be made from timely sowing.
- Avoid sowing too early in medium and longer growing season areas to ensure flowering and podding is under warm conditions.
- Inoculate with Group N Chickpea rhizobial inoculum at sowing.
Row Spacing:
Trial work and commercial experience has shown that chickpea’s can be grown successfully and harvested efficiently at a range of row spacing’s. At the wider spacing’s (>30 cm) stubble cover maintained may help avoid evaporation losses. Genesis™ 079 is shorter than other chickpea varieties, so increased height from inter-row sown in wider rows into standing stubble may be an advantage.

Herbicide Sensitivity:
Herbicide tolerance trials in Victoria and South Australia (Wimmera clay and alkaline sandy loam soils) show that herbicides commonly used in Genesis™ 090 chickpeas can be used on Genesis™ 079 with the same degree of safety. Severe seasonal effects on herbicide activity occur, so work is ongoing to validate findings under differing seasonal conditions.

Disease Management:
To minimise yield losses to ascochyta blight, botrytis grey mould and phytophthora, follow local best management guidelines for your region, eg see disease management guides on www.pulseaus.com.au or Departmental web sites. Use a seed dressing (containing thiram or thiabendazole plus thiram) for the control of ascochyta blight, botrytis grey mould and common root rots.

Ascochyta blight disease management with Genesis™ 079 is the same as with the other ascochyta resistant varieties like Genesis™ 090 or Genesis™ 509:
- Fungicide sprays are unlikely to be required before podding, but monitor crops for signs of disease.
- Use a foliar fungicide at early podding prior to rain to ensure pods are protected, and high quality, disease free grain is produced.
- Pods of Genesis™ 079 can be affected by ascochyta blight, and this can result in poor quality, discoloured grain or seed abortion and yield loss in severe situations.
- Further fungicide applications during podding may be required if ascochyta blight is present in the crop in a high risk situation where there is an extended pod filling period and a rainfall event is predicted.

There is less risk of botrytis grey mould infection in Genesis™ 079 because of the less bulky canopy.
- Fungicide applications from canopy closure stage will assist in controlling botrytis grey mould if disease is present or in tall bulky crops in an area prone to infection.

Insect control:
Monitoring and early budworm control is critical with all chickpeas, and early detection will be important in Genesis™ 079 will be important because of it’s early flowering time and short flowering duration.

Frost, cold and heat:
The early flowering of Genesis™ 079 and its short flowering and podding duration is an advantage in short growing seasons. However, in medium and longer growing season areas, it could flower and pod in colder, frostier periods if sown too early.

Crop topping and Weed wiping:
Genesis™ 079 matures early enough in some seasons to be crop-topped to prevent weed seed set, particularly ryegrass. Even in bulky crops, ryegrass seed heads will emerge above the shorter canopy, hence weed wiping in Genesis™ 079 has been successful. Grain yield loss will however be severe if early ryegrass escapes proceed through to almost crop maturity.

Timing of either practice must target the ryegrass stage, so care is required to ensure that chickpea grain quality is not affected when the chickpeas are less mature than desirable at the time.

Desiccation and Harvest:
- Desiccation may be beneficial to enable early harvest and ensure kabuli quality is achieved.
- Harvester settings will need to be similar to that for other small kabuli chickpeas.
- Early harvest is recommended to maximise yield and reduce seed staining through weathering, disease and pests.
- Crop lifters should not be required.
Marketing:
- Genesis™ 079 is likely to be traded as a bulk commodity rather than being graded to size for marketing.
- It is likely to receive prices lower than varieties like Genesis™ 090, and more likely to receive desi prices or slightly lower, depending on seed size and demand.
- Genesis™ 079 has an End Point Royalty (EPR) of $5.50 per tonne (inc GST) marketed which includes management, administration costs and a plant breeder’s return.
- Genesis™ 079 grain will be able to be freely marketed to Authorised Trading Companies (ATCs) established through agreements with Australian Agricultural Crop Technologies (AACT).
- ATCs include the majority of pulse trading companies within Australia and are listed on the AACT website. The ATC will deduct EPR from grower payments automatically. Any commercial pulse trading company is welcome to apply to be an ATC.

Seed Availability and PBR:
Genesis™ 079 will be available for sowing in 2011, and is being commercialised through Australian Agricultural Crop Technologies (AACT). Seed will be covered by a licence and growers will be required to sign a Seed Variety Licence Agreement. Genesis™ 079 seed is available through registered seed re-sellers listed on the AACT website.

For details on registered seed re-sellers or Authorised Trading Companies contact:
Australian Agricultural Crop Technologies national office:
Ph (02) 6795 3050
or visit the website www.aacroptech.com

Agronomic Enquiries: Contact:
Wayne Hawthorne (Pulse Aust) 0429 647455;
Alan Meldrum (Pulse Aust) 0427 384 760;
Larn McMurray (SARDI) 08 8842 6265;
Peter Matthews, NSW DPI 02 6977 3333;
Trevor Bray (Pulse Aust) 0428 606 886;
Kristy Hobson (Vic DPI) 03 5362 2111;
Jason Brand DPI Vic 03 5362 2341;
Ian Pritchard, DAFWA 08 9368 3515.

Other Reading: For field chickpea management guidelines, see:
- Grain Legume Handbook 2008
- Pulse Australia publications: “Chickpea disease management strategy for southern region GRDC” and supplements, and “Pulse seed treatments and foliar fungicides” (www.pulseaus.com.au)

Acknowledgements: The contribution of the following people to either the extensive field testing, or the production of this or the original publication is gratefully acknowledged: Larn McMurray, Pulse Research Agronomist, SARDI; Jason Brand, Pulse Research Agronomist, Vic DPI; Eric Armstrong, Pulse Research Officer, DPI NSW; Jenny Davidson; Plant Pathologist, SARDI; Mark Seymour, Research Agronomist, Dept. Agric and Food, WA; Trevor Bretag, formerly Plant Pathologist, DPI Vic; Michael Lines, Research Agronomist, SARDI; Kristy Hobson, Plant Breeder (Chickpeas), DPI Vic; Ian Pritchard, Agronomist, Dept. Agric. WA; Wayne Hawthorne, Trevor Bray and Alan Meldrum, Pulse Australia.

Disclaimer: Recommendations have been made from information available to date and considered reliable, and will be updated as further information comes to hand. Readers who act on this information do so at their own risk. No liability or responsibility is accepted for any actions or outcomes arising from use of the material contained in this publication.

This VMP has been jointly prepared by: Wayne Hawthorne, Pulse Australia; Kristy Hobson and Jason Brand, Vic DPI; Larn McMurray, SARDI on information and data from, SARDI, DPI Victoria, I&I NSW, DAFWA and NVT.
Reproduction of this VMP in any edited form must be approved by Pulse Australia © 2010.